3.1 Introduction: Second-Order Linear Equations

3.1 Introduction: Second-Order Linear Equations

- 1. Definition of second-order linear equations
- 2. Homogeneous Second-Order Linear Equations
- 3. Linear Independence of Two Functions
- 4. Linear Second-Order Equations with Constant Coefficients
- 5. Euler Equation

1. Definition of second-order linear equations

A linear second-order equation can be written in the form

$$A(x)y'' + B(x)y' + C(x)y = F(x)$$
 (1)

We assume that A(x), B(x), C(x) and F(x) are continuous functions on some open interval *I*.

For example,

$$e^x y'' + (\cos x) y' + (1 + \sqrt{x}) y = an^{-1} x$$

is linear because the dependent variable y and its derivatives y' and y'' appear linearly.

The equations

$$y'' = yy' \quad ext{and} \quad y'' + 2(y')^2 + 4y^3 = 0$$

are **not** linear because products and powers of *y* or its derivatives appear.

2. Homogeneous Second-Order Linear Equations

If the function F(x) = 0 on the right-hand side of Eq. (1), then we call Eq. (1) a **homogeneous** linear equation; otherwise, it is **nonhomogeneous**. In general, the homogeneous linear equation associated with Eq. (1) is

$$A(x)y'' + B(x)y' + C(x)y = 0$$
(2)

For example, the second-order equation

$$2x^2y'' + 2xy' + 3y = \sin x$$

is nonhomogeneous; its associated homogeneous equation is

$$2x^2y'' + 2xy' + 3y = 0$$

Consider

$$A(x)y^{\prime\prime}+B(x)y^{\prime}+C(x)y=F(x)$$

Assume that $A(x) \neq 0$ at each point of the open interval I, we can divide each term in Eq. (1) by A(x) and write it in the form

$$y'' + p(x)y' + q(x)y = f(x)$$

We will discuss first the associated homogeneous equation

$$y'' + p(x)y' + q(x)y = 0$$
 (3)

$$y^{\prime\prime}+p(x)y^{\prime}+q(x)y=0$$

Theorem 1 Principle of Superposition for Homogeneous Equations

Let y_1 and y_2 be two solutions of the homogeneous linear equation in Eq. (3) on the interval I. If c_1 and c_2 are constants, then the linear combination $C_{1}y_{1}'' + C_{1}p(x)y_{1}' + C_{1}q(x)y_{1} = 0$ + $C_{2}y_{2}'' + C_{1}p(x)y_{2}' + C_{2}q(x)y_{2} = 0$

(3)

p(x) (G, y', + G, y') + g(x) (G, y'+ G, y)=0

$$y = c_1 y_1 + c_2 y_2$$

C, Y," + C_1

is also a solution of Eq. (3) on I.

Application of Theorem 1. In Examples 1 and Exercise 2, a homogeneous second-order linear differential equation, two functions y_1 and y_2 , and a pair of initial conditions are given. First verify that y_1 and y_2 are solutions of the differential equation. Then find a particular solution of the form $y = c_1y_1 + c_2y_2$ that satisfies the given initial conditions.

Example 1

$$y'' - 3y' + 2y = 0; \quad y_1 = e^x, \quad y_2 = e^{2x}; \quad y(0) = 1, \quad y'(0) = 7.$$

ANS: If $y_1 = e^x$, then $y'_1 = e^x$, $y''_1 = e^x$
 $y''_1 - 3y'_1 + 2y_1 = e^x - 3e^x + 2e^x = 0$
So y_1 is a solution
If $y_2 = e^{2x}$, then $y'_2 = 2e^{2x}$, $y''_2 = 4e^{2x}$
 $y''_1 - 3y'_2 + 2y_2 = 4e^{2x} - 6e^{2x} + 2e^{2x} = 0$
So y_2 is also a solution.
By Theorem 1, we know
 $y = c_1y_1 + c_2y_2 = c_1e^x + c_2e^{2x}$ is also a solution of \mathfrak{B}
Since $y(0) = 1$, $y'(0) = 7$
 $y(0) = c_1e^x + 2c_2e^{2x}$
 $y'(0) = c_1e^x + 2c_2e^{2x} = c_1 + 2c_2 = 7$

Thus
$$y(x) = -5e^{x} + 6e^{2x}$$

Exercise 2

$$x^2y''-2xy'+2y=0; \hspace{0.5cm} y_1=x, \hspace{0.5cm}, y_2=x^2; \hspace{0.5cm} y(1)=3, \hspace{0.5cm} y'(1)=1.$$

ANS: If
$$y_{1}:x$$
, then $y_{1}'=1$, $y_{1}''=0$
Then $x^{2} \cdot y_{1}'' - 2x \cdot y_{1}' + 2y_{1} = x^{2} \cdot 0 - 2x \cdot 1 + 2x = 0$
Thus y_{1} is a solution for Θ .
If $y_{2}=x^{2}$, then $y_{2}'=2x$, $y_{2}''=2$.
Then $x^{2} \cdot y_{1}'' - 2x \cdot y_{2}' + 2 \cdot y_{2} = x^{2} \cdot 2 - 2x \cdot 2x + 2x^{2} = 0$
Thus y_{1} is a solution for Θ .
By thm 1. $y_{1}=c_{1}y_{1} + c_{2}y_{2}$ is a solution for Θ
 $= c_{1} \times + c_{2} \cdot x^{2}$.
Since $y(1)=3$, $y(1)=c_{1} + c_{2}=3$
Give $y'(1)$; $y'(x)=c_{1} + 2c_{2}x$, $y'(1)=c_{1} + 2c_{2} = \int_{0}^{0} c_{1} + c_{2} \cdot z$

Thus y(x)= 5x-2x² is a particular solution for the given initial value problem.

Theorem 2 Existence and Uniqueness for Linear Equations

Suppose that the functions p, q, and f are continuous on the open interval I containing the point a. Then, given any two numbers b_0 and b_1 , the equation

$$y'' + p(x)y' + q(x)y = f(x)$$

has a unique (that is, one and only one) solution on the entire interval *I* that satisfies the initial conditions

$$y(a)=b_0, \qquad y'(a)=b_1.$$

3. Linear Independence of Two Functions

Two functions defined on an open interval I are said to be **linearly independent** on I if neither is a constant multiple of the other. Two functions are said to be **linearly dependent** on an open interval if one of them is a constant multiple of the other. $Y_{1} = x$, $Y_{2} = 5 \times$, Y_{1} and Y_{2} are *linearly dependent* of For example, the following pairs of functions are linearly independent on the entire real line sincesin x and cos x $Y_{2} = 5Y_{1}$

 $\sin x$ and $\cos x$ e^x and xe^x x+1 and x^3

The functions $f(x) = \sin 2x$ and $g(x) = \sin x \cos x$ are linearly dependent.

 $f(x) = 1 \sin x \cos x = 2g(x)$

We can compute the **Wronskian** of two functions to determine if they are linearly independent (or dependent).

Given two functions f and g, the **Wronskian** of f and g is the determinant

$$W(f,g) = egin{bmatrix} f & g \ f' & g' \end{bmatrix} = fg' - f'g.$$

For example,

$$W(\cos x,\sin x) = egin{pmatrix} \cos x & \sin x \ -\sin x & \cos x \end{bmatrix} = \cos^2 x + \sin^2 x = 1$$

and

$$W(x,5x)=egin{bmatrix} x & 5x\ 1 & 5 \end{bmatrix}=5x-5x=0,$$

Theorem 3 Wronskians of Solutions

Suppose that y_1 and y_2 are two solutions of the homogeneous second-order linear equation Eq. (3)

$$y'' + p(x)y' + q(x)y = 0$$

on an open interval I on which p and q are continuous.

(a) If y_1 and y_2 are linearly dependent, then $W(y_1, y_2) \equiv 0$ on I.

(b) If y_1 and y_2 are linearly independent, then $W(y_1, y_2) \neq 0$ at each point of I.

Theorem 4 General Solutions of Homogeneous Equations

Let y_1 and y_2 be two linearly independent solutions of the homogeneous equation Eq. (3)

$$y'' + p(x)y' + q(x)y = 0$$

with p and q continuous on the open interval I. If Y is any solution whatsoever of Eq. (3) on I, then there exist numbers c_1 and c_2 such that

$$Y(x) = c_1 y_1(x) + c_2 y_2(x)$$

for all x in I.

4. Linear Second-Order Equations with Constant Coefficients

Let's discuss how to solve the homogeneous second-order linear differential equation

$$ay'' + by' + cy = 0 \tag{4}$$

with constant coefficients a, b, and c.

Consider a function of the form $y = e^{rx}$. Observe that

$$y' = (e^{rx})' = re^{rx},$$
 and $y'' = (e^{rx})'' = r^2 e^{rx}.$

This suggest that we can try to find r such that when we substitute y, y' and y'' into Eq. (4), we will get zero on the left hand-side. $\alpha \gamma^2 e^{rx} + b \gamma e^{rx} + c e^{rx} = e^{rx} (\alpha r^2 + br + c) = 0 \Rightarrow \alpha r^2 + br + c = 0$ **Example 3** Find the values of r such that $y(x) = e^{rx}$ is a solution of the given differential equation.

$$y^{\prime\prime}+2y^{\prime}-15y=0$$

ANS: If
$$y(x) = e^{rx}$$
, then $y' = re^{rx}$, $y'' = r^2 e^{rx}$
so we need to find r such that
 $r^2 e^{rx} + 2re^{rx} - 15e^{rx} = 0$
 $\Rightarrow e^{rx} (r^2 + 2r - 15) = 0$
Note $e^{rx} \neq 0$ for any x .
So we have
 $r^2 + 2r - 15 = 0$ (characteristic eqn)
 $\Rightarrow (r+5)(r-3) = 0 \Rightarrow r = -5$ or $r = 3$.
So $y_i = e^{-5x}$ and $y_2 = e^{3x}$ are solutions of the given eqn.
Note y_i and y_2 are lineally independent.
By Thm 4. $y(x) = C_i y_i + C_2 y_1 = C_i e^{-5x} + C_2 e^{3x}$
is general solution, where C_i and C_2 are
constarts

In general, we subsititute $y=e^{rx}$ in Eq. (4). Then

$$ar^2e^{rx} + bre^{rx} + ce^{rx} = 0$$

Since e^{rx} is never zero. We conclude $y = e^{rx}$ will satisfy the differential equation in Eq. (4) precisely when r is a root of the algebraic equation

$$ar^2 + br + c = 0 \tag{5}$$

This quadratic equation is called the **characteristic equation** of the homogeneous linear differential equation

$$ay'' + by' + cy = 0$$

If Eq. (5) has distinct (unequal) roots r_1 and r_2 , then the corresponding solutions $y_1(x) = e^{r_1 x}$ and $y_2(x) = e^{r_2 x}$ of Eq. (5). are linearly independent. Why?

By looking at their graph or computing
$$W(y_1, y_2)(\neq 0)$$

Theorem 5 Distinct Real Roots

If the roots r_1 and r_2 of the characteristic equation in Eq. (5) are real and distinct, then

$$y(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x}$$

is a general solution of Eq. (4).

Question: What if we have $r_1 = r_2$ for the characeristic equation?

Example 4

Find general solutions of the given differential equations.

$$y'' + 4y' + 4y = 0 \quad \bigotimes$$

ANS: The corresponding char. eqn is

$$Y^{2} + 4Y + 4 = 0$$

 $\Rightarrow (Y + 2)^{2} = 0 \Rightarrow Y_{1} = Y_{2} = -2$
So $y_{1} = e^{Y_{1}X} = e^{Y_{2}X} = e^{-2X}$ is a solution to Q.
How do we find another solution y_{2} such that y_{1} & y_{2}
are linearly independent?
Let's check if $y_{2} = xe^{-2X} \in xy_{1}$ works.

$$\begin{aligned} y'_{2} &= (xe^{-2x})' = x(e^{-2x})' + (x)'e^{-2x} = -2xe^{-2x} + e^{-2x} \\ y''_{2} &= -2e^{-2x} + 4xe^{-2x} - 2e^{-2x} = -4e^{-3x} + 4xe^{-2x} \\ y''_{1} + 4y'_{2} + 4y'_{2} = -4e^{-2x} + 4xe^{-2x} + 4(-2xe^{-2x} + e^{-2x}) + 4xe^{-2x} \\ &= 0 \\ So \quad y_{1} &= xe^{-2x} \text{ is a solution. And } y_{1} = e^{-2x} \text{ and } y_{2} = xe^{2n} \\ are \quad linearly independent. \\ By \quad Thm \ 4, \quad y(x) = C_{1}y'_{1} + C_{2}y'_{2} \implies y(x) = (C_{1} + C_{2}x)e^{-2x} \\ is \quad a \quad general \quad solution. \end{aligned}$$

In general, we have the following theorem if $r_1 = r_2$.

Theorem 6 Repeated Roots

If the characteristic equation in Eq. (5) has equal (necessarily real) roots $r_1 = r_2$, then,

$$y(x) = (c_1 + c_2 x)e^{r_1 x}$$

is a general solution of Eq. (5).

Example 5

Find general solutions of the given differential equations.

(1)
$$9y'' - 6y' + y = 0$$

(2) 2y'' + 3y' = 0 (exercise)

ANS: (1) The corresponding char. eqn is

$$9r^2 - 6r + 1 = 0$$
 $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
 $\Rightarrow r^2 - \frac{2}{3}r + \frac{1}{4} = 0$
 $\Rightarrow (r - \frac{1}{3})^2 = 0$
 $\Rightarrow r_1 = r_2 = \frac{1}{3}$
The general solution is $y = (c_1 + c_1 x)e^{\frac{1}{3}x}$, where

C, and c, are constants,

(2). The corresponding characteristic equation is

$$2r^{2}+3r = 0$$

 $\Rightarrow r(2r+3)=0$
 $\Rightarrow r=0 \text{ or } r=-\frac{3}{2}$ (distinct)

So
$$y = C_1 y_1 + C_2 y_2 = C_1 e^{0 \cdot x} + C_2 e^{-\frac{3}{2}x} = C_1 + C_2 e^{-\frac{3}{2}x}$$

is ageneral solution.

Example 6. The equation

$$y(x) = c_1 + c_2 e^{-10x}$$

gives a general solution y(x) of a homogeneous second-order differential equation ay'' + by' + cy = 0 with constant coefficients. Find such an equation.

AWS:
$$y(x) = C_1 + C_2 e^{-i\sigma x} = C_1 + C_2 e^{-i\sigma x} = C_1 e^{\sigma x} + C_2 e^{-i\sigma x}$$

$$\Rightarrow \int_{x_2}^{x_1=0} f_{x_2} = -i\sigma \quad \text{are solutions to the char. eqn.}$$
Thus $(r - \sigma)(r - (-i\sigma)) = \sigma$

$$\Rightarrow r(r+i\sigma) = \sigma$$

$$\Rightarrow r^2 + i\sigma r = \sigma \quad (\Rightarrow \alpha r^2 + br + c = \sigma)$$
is the char. eqn.
So $\alpha = 1$, $b = i\sigma$, $c = \sigma$.
Thus the diff eqn is
 $y'' + (\sigma y' = \sigma)$

<mark>5. Euler Equation</mark>

A second-order Euler equation is one of the form

$$ax^2y'' + bxy' + cy = 0 \tag{8}$$

where a, b, c are constants.

Example 7. Make the substitution $v = \ln x$ of the following question to find general solutions (for x > 0) of the Euler equation.

$$x^{2}y'' + 2xy' - 12y = 0$$

AWS: Let $V = \ln x$.

$$y' = \frac{d^{4}y}{dx} = \frac{d^{4}y}{dx} \cdot \frac{dv}{dv} = \frac{d^{4}y}{dv} \cdot \frac{dv}{dx} = \frac{d^{4}y}{dv} \cdot \frac{1}{x}$$

$$y'' = \frac{d^{5}y}{dx^{2}} = \frac{d}{dx} \left(\frac{d^{4}y}{dx}\right) = \frac{d}{dx} \left(\frac{1}{x} \cdot \frac{d^{4}y}{dv}\right)$$

$$= -\frac{1}{x^{2}} \cdot \frac{d^{4}y}{dv} + \frac{1}{x} \cdot \frac{d}{dx} \cdot \frac{d^{4}v}{dv} \cdot \frac{d^{4}y}{dv}$$

$$= -\frac{1}{x^{2}} \cdot \frac{d^{4}y}{dv} + \frac{1}{x} \cdot \frac{d^{5}y}{dv^{2}} \cdot \frac{d^{4}v}{dv} \cdot \frac{d^{4}y}{dv}$$

$$= -\frac{1}{x^{2}} \cdot \frac{d^{4}y}{dv} + \frac{1}{x} \cdot \frac{d^{5}y}{dv^{2}} \cdot \frac{d^{4}y}{dv}$$

$$= -\frac{1}{x^{2}} \cdot \frac{d^{4}y}{dv} + \frac{1}{x^{2}} \cdot \frac{d^{5}y}{dv^{2}}$$
Plug them into Eq.(9). we have.

$$x^{2} \left(-\frac{1}{x^{2}} \cdot \frac{d^{4}y}{dv} + \frac{1}{x^{2}} \cdot \frac{d^{5}y}{dv^{2}} \right) + 2x \cdot \frac{1}{x} \cdot \frac{d^{4}y}{dv} - 12y = 0$$

$$\Rightarrow -\frac{d^{4}y}{dv} + \frac{d^{2}y}{dv} - 12y = 0$$
This is of the form $ay'' + by' + cy = 0$, where y

is a function of v.
The char. eqn is

$$Y^{2} + Y - 12Y = 0$$

 $\Rightarrow (Y+4)(Y-3) = 0$
 $\Rightarrow Y_{1} = -4$ and $Y_{2} = 3$ (distinct roots)
So $Y = C_{1}Y_{1} + (2Y_{2}) = C_{1} e^{-4v} + C_{2} e^{3v}$
 $= C_{1}e^{-4hx} + C_{2} e^{3hx}$
 $\Rightarrow Y_{1} = C_{1} \chi^{-4} + C_{2} \chi^{3}$
This is the general solution of Eq.(9).