3.1 Introduction: Second-Order Linear Equations

3.1 Introduction: Second-Order Linear Equations
1. Definition of second-order linear equations
2. Homogeneous Second-Order Linear Equations
3. Linear Independence of Two Functions
4. Linear Second-Order Equations with Constant Coefficients
5. Euler Equation

1. Definition of second-order linear equations

A linear second-order equation can be written in the form

$$
\begin{equation*}
A(x) y^{\prime \prime}+B(x) y^{\prime}+C(x) y=F(x) \tag{1}
\end{equation*}
$$

We assume that $A(x), B(x), C(x)$ and $F(x)$ are continuous functions on some open interval I. For example,

$$
e^{x} y^{\prime \prime}+(\cos x) y^{\prime}+(1+\sqrt{x}) y=\tan ^{-1} x
$$

is linear because the dependent variable y and its derivatives y^{\prime} and $y^{\prime \prime}$ appear linearly.

The equations

$$
y^{\prime \prime}=y y^{\prime} \quad \text { and } \quad y^{\prime \prime}+2\left(y^{\prime}\right)^{2}+4 y^{3}=0
$$

are not linear because products and powers of y or its derivatives appear.

2. Homogeneous Second-Order Linear Equations

If the function $F(x)=0$ on the right-hand side of Eq. (1), then we call Eq. (1) a homogeneous linear equation; otherwise, it is nonhomogeneous. In general, the homogeneous linear equation associated with Eq. (1) is

$$
\begin{equation*}
A(x) y^{\prime \prime}+B(x) y^{\prime}+C(x) y=0 \tag{2}
\end{equation*}
$$

For example, the second-order equation

$$
2 x^{2} y^{\prime \prime}+2 x y^{\prime}+3 y=\sin x
$$

is nonhomogeneous; its associated homogeneous equation is

$$
2 x^{2} y^{\prime \prime}+2 x y^{\prime}+3 y=0
$$

Consider

$$
A(x) y^{\prime \prime}+B(x) y^{\prime}+C(x) y=F(x)
$$

Assume that $A(x) \neq 0$ at each point of the open interval I, we can divide each term in Eq. (1) by $A(x)$ and write it in the form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

We will discuss first the associated homogeneous equation

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{3}
\end{equation*}
$$

Theorem 1 Principle of Superposition for Homogeneous Equations
Let y_{1} and y_{2} be two solutions of the homogeneous linear equation in Eq. (3) on the interval I. If c_{1} and c_{2} are constants, then the linear combination
is also a solution of Eq. (3) on I.

Application of Theorem 1. In Examples 1 and Exercise 2, a homogeneous second-order ${ }^{\Rightarrow} y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$ equation, two functions y_{1} and y_{2}, and a pair of initial conditions are given. First verify that y_{1} and y_{2} are solutions of the differential equation. Then find a particular solution of the form $y=c_{1} y_{1}+c_{2} y_{2}$ that satisfies the given initial conditions.
Example 1

$$
y^{\prime \prime}-3 y^{\prime}+2 y=0 ; \quad y_{1}=e^{x}, \quad y_{2}=e^{2 x} ; \quad y(0)=1, \quad y^{\prime}(0)=7
$$

ANS: If $y_{1}=e^{x}$, then $y_{1}^{\prime}=e^{x}, y_{\prime}^{\prime \prime}=e^{x}$

$$
y_{1}^{\prime \prime}-3 y_{1}^{\prime}+2 y_{1}=e^{x}-3 e^{x}+2 e^{x}=0
$$

So y_{1} is a solution
If $y_{2}=e^{2 x}$, then $y_{2}{ }^{\prime}=2 e^{2 x}, y_{2}^{\prime \prime}=4 e^{2 x}$

$$
y_{2}^{\prime \prime}-3 y_{2}^{\prime}+2 y_{2}=4 e^{2 x}-6 e^{2 x}+2 e^{2 x}=0
$$

So y_{2} is also a solution.
By Theorem 1, we know
$y=c_{1} y_{1}+c_{2} y_{2}=c_{1} e^{x}+c_{2} e^{2 x}$ is also a solution of \otimes Since $y(0)=1 \quad y^{\prime}(0)=7$

$$
\left.\begin{array}{r}
y(0)=c_{1} e^{0}+c_{2} e^{2 \cdot 0}=c_{1}+c_{2}=1 \\
y^{\prime}(x)=c_{1} e^{x}+2 c_{2} e^{2 x} \\
y^{\prime}(0)=c_{1} e^{0}+2 c_{2} e^{2 \cdot 0}=c_{1}+2 c_{2}=7
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
c_{1}=-5 \\
c_{2}=6
\end{array}\right.
$$

Thus $y(x)=-5 e^{x}+6 e^{2 x}$
Exercise 2

$$
x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0 ; \quad y_{1}=x, \quad, y_{2}=x^{2} ; \quad y(1)=3, \quad y^{\prime}(1)=1
$$

ANS: If $y_{1}=x$, then $y_{1}^{\prime}=1, \quad y_{1}^{\prime \prime}=0$
Then $x^{2} \cdot y_{1}^{\prime \prime}-2 x y_{1}^{\prime}+2 y_{1}=x^{2} \cdot 0-2 x \cdot 1+2 x=0$
Thus y, is a solution for \otimes.
If $y_{2}=x^{2}$, then $y_{2}^{\prime}=2 x, \quad y_{2}^{\prime \prime}=2$.
Then $x^{2} \cdot y_{2}^{\prime \prime}-2 x \cdot y_{2}^{\prime}+2 \cdot y_{2}=x^{2} \cdot 2-2 x \cdot 2 x+2 x^{2}=0$
Thus y_{2} is a solution for .
By the 1. $y=c_{1} y_{1}+c_{2} y_{2}$ is a solution for $*$

$$
=C_{1} x+C_{2} \cdot x^{2}
$$

Since $y(1)=3, \quad y(1)=c_{1}+c_{2}=3$
Since $y^{\prime}(1) ; \quad y^{\prime}(x)=c_{1}+2 c_{2} x, \quad y^{\prime}(1)=c_{1}+2 c_{2}=1$

$$
\left\{\begin{array} { l }
{ c _ { 1 } + c _ { 2 } = 3 } \\
{ c _ { 1 } + 2 c _ { 2 } = 1 }
\end{array} \Rightarrow \left\{\begin{array}{l}
c_{1}=5 \\
c_{2}=-2
\end{array}\right.\right.
$$

Thus $y(x)=5 x-2 x^{2}$ is a particular solution for the given initial value problem.

Theorem 2 Existence and Uniqueness for Linear Equations

Suppose that the functions p, q, and f are continuous on the open interval I containing the point a. Then, given any two numbers b_{0} and b_{1}, the equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

has a unique (that is, one and only one) solution on the entire interval I that satisfies the initial conditions

$$
y(a)=b_{0}, \quad y^{\prime}(a)=b_{1} .
$$

3. Linear Independence of Two Functions

Two functions defined on an open interval I are said to be linearly independent on I if neither is a constant multiple of the other. Two functions are said to be linearly dependent on an open interval if one of them is a constant multiple of the other. $y_{1}=x, y_{2}=5 x, y_{1}$ and y_{2} are linearly depend dent For example, the following pairs of functions are linearly independent on the entire real line

$$
\sin x \text { and } \cos x \quad y_{2}=5 y_{1}
$$

e^{x} and $x e^{x}$
$x+1$ and x^{3}
The functions $f(x)=\sin 2 x$ and $g(x)=\sin x \cos x$ are linearly dependent.

$$
f(x)=2 \sin x \cos x=2 g(x)
$$

We can compute the Wronskian of two functions to determine if they are linearly independent (or dependent).

Given two functions f and g, the Wronskian of f and g is the determinant

$$
W(f, g)=\left|\begin{array}{cc}
f & g \\
f^{\prime} & g^{\prime}
\end{array}\right|=f g^{\prime}-f^{\prime} g .
$$

For example,

$$
W(\cos x, \sin x)=\left|\begin{array}{cc}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right|=\cos ^{2} x+\sin ^{2} x=1
$$

and

$$
W(x, 5 x)=\left|\begin{array}{cc}
x & 5 x \\
1 & 5
\end{array}\right|=5 x-5 x=0
$$

Theorem 3 Wronskians of Solutions

Suppose that y_{1} and y_{2} are two solutions of the homogeneous second-order linear equation Eq. (3)

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

on an open interval I on which p and q are continuous.
(a) If y_{1} and y_{2} are linearly dependent, then $W\left(y_{1}, y_{2}\right) \equiv 0$ on I.
(b) If y_{1} and y_{2} are linearly independent, then $W\left(y_{1}, y_{2}\right) \neq 0$ at each point of I.

Theorem 4 General Solutions of Homogeneous Equations

Let y_{1} and y_{2} be two linearly independent solutions of the homogeneous equation Eq. (3)

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

with p and q continuous on the open interval I. If Y is any solution whatsoever of Eq. (3) on I, then there exist numbers c_{1} and c_{2} such that

$$
Y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

for all x in I.

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{4}
\end{equation*}
$$

with constant coefficients a, b, and c.
Consider a function of the form $y=e^{r x}$. Observe that

$$
y^{\prime}=\left(e^{r x}\right)^{\prime}=r e^{r x}, \quad \text { and } \quad y^{\prime \prime}=\left(e^{r x}\right)^{\prime \prime}=r^{2} e^{r x}
$$

This suggest that we can try to find r such that when we substitute y, y^{\prime} and $y^{\prime \prime}$ into Eq. (4), we will get zero on the left hand-side. $a r^{2} e^{r x}+b r e^{r x}+c e^{r x}=e^{r x}\left(a r^{2}+b r+c\right)=0 \Rightarrow a r^{2}+b r+c=0$
Example 3 Find the values of r such that $y(x)=e^{r x}$ is a solution of the given differential equation.

$$
y^{\prime \prime}+2 y^{\prime}-15 y=0
$$

ANS: If $y(x)=e^{r x}$, then $y^{\prime}=r e^{r x}, \quad y^{\prime \prime}=r^{2} e^{r x}$
So we need to find r such that

$$
\begin{aligned}
& r^{2} e^{r x}+2 r e^{r x}-15 e^{r x}=0 \\
\Rightarrow & e^{r x}\left(r^{2}+2 r-15\right)=0
\end{aligned}
$$

Note $e^{r x} \neq 0$ for any x.
So we have

$$
\begin{aligned}
r^{2}+2 r-15 & =0 \quad \text { (characteristic eq n) } \\
\Rightarrow & (r+5)(r-3)
\end{aligned}=0 \Rightarrow r=-5 \text { or } r=3 .
$$

So $y_{1}=e^{-5 x}$ and $y_{2}=e^{3 x}$ are solutions of the given eqn.
Note y_{1} and y_{2} are lineally independent By Thu 4, $\quad y(x)=c_{1} y_{1}+c_{2} y_{2}=c_{1} e^{-5 x}+c_{2} e^{3 x}$
 is general solution, where C_{1} and C_{2} are constants.

In general, we substitute $y=e^{r x}$ in Eq. (4). Then

$$
a r^{2} e^{r x}+b r e^{r x}+c e^{r x}=0
$$

Since $e^{r x}$ is never zero. We conclude $y=e^{r x}$ will satisfy the differential equation in Eq. (4) precisely when r is a root of the algebraic equation

$$
\begin{equation*}
a r^{2}+b r+c=0 \tag{5}
\end{equation*}
$$

This quadratic equation is called the characteristic equation of the homogeneous linear differential equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

If Eq. (5) has distinct (unequal) roots r_{1} and r_{2}, then the corresponding solutions $y_{1}(x)=e^{r_{1} x}$ and $y_{2}(x)=e^{r_{2} x}$ of Eq. (5). are linearly independent. Why?

By looking at their graph or computing $W\left(y_{1}, y_{2}\right)(\neq 0)$
Theorem 5 Distinct Real Roots
If the roots r_{1} and r_{2} of the characteristic equation in Eq. (5) are real and distinct, then

$$
y(x)=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}
$$

is a general solution of Eq. (4).

Question: What if we have $r_{1}=r_{2}$ for the characeristic equation?
Example 4
Find general solutions of the given differential equations.

$$
y^{\prime \prime}+4 y^{\prime}+4 y=0
$$

ANS: The corresponding char. eqn is

$$
\begin{aligned}
& r^{2}+4 r+4=0 \\
\Rightarrow & (r+2)^{2}=0 \quad \Rightarrow \quad r_{1}=r_{2}=-2
\end{aligned}
$$

$$
\text { So } y_{1}=e^{r_{1} x}=e^{r_{2} x}=e^{-2 x} \text { is a solution to } Q \text {. }
$$

How do we find another solution y_{2} such that $y_{1} \& y_{2}$ are linearly independent?

$$
\text { Let's check if } y_{2}=x e^{-2 x}\left(x y_{1}\right) \text { works. }
$$

$$
\begin{aligned}
& y_{2}^{\prime}=\left(x e^{-2 x}\right)^{\prime}=x\left(e^{-2 x}\right)^{\prime}+(x)^{\prime} e^{-2 x}=-2 x e^{-2 x}+e^{-2 x} \\
& y_{2}^{\prime \prime}=-2 e^{-2 x}+4 x e^{-2 x}-2 e^{-2 x}=-4 e^{-2 x}+4 x e^{-2 x} \\
& y_{2}^{\prime \prime}+4 y_{2}^{\prime}+4 y_{2}=-4 e^{-2 x}+4 x e^{-2 x}+4\left(-2 x e^{-2 x}+e^{-2 x}\right)+4 x e^{-2 x} \\
&=0
\end{aligned}
$$

So $y_{2}=x e^{-2 x}$ is a solution. And $y_{1}=e^{-2 x}$ and $y_{2}=x e^{-2 x}$ are linearly independent.
$B y$ Thm 4, $y(x)=c_{1} y_{1}+c_{2} y_{2} \Rightarrow y(x)=\left(c_{1}+c_{2} x\right) e^{-2 x}$ is a general solution.

In general, we have the following theorem if $r_{1}=r_{2}$.
Theorem 6 Repeated Roots
If the characteristic equation in Eq. (5) has equal (necessarily real) roots $r_{1}=r_{2}$, then,

$$
y(x)=\left(c_{1}+c_{2} x\right) e^{r_{1} x}
$$

is a general solution of Eq. (5).

Example 5
Find general solutions of the given differential equations.
(1) $9 y^{\prime \prime}-6 y^{\prime}+y=0$
(2) $2 y^{\prime \prime}+3 y^{\prime}=0$ (exercise)

ANS: (1) The corresponding char. egn is

$$
\begin{aligned}
& 9 r^{2}-6 r+1=0 \\
\Rightarrow & r^{2}-\frac{2}{3} r+\frac{1}{9}=0 \\
\Rightarrow & \left(r-\frac{1}{3}\right)^{2}=0 \\
\Rightarrow & r_{1}=r_{2}=\frac{1}{3}
\end{aligned}
$$

The general solution is $y=\left(c_{1}+c_{2} x\right) e^{\frac{3}{3 x}}$, where
c_{1} and c_{2} are constants.
(2). The corresponding characteristic equation is

$$
\begin{aligned}
& 2 r^{2}+3 r=0 \\
\Rightarrow & r(2 r+3)=0 \\
\Rightarrow & r=0 \text { or } r=-\frac{3}{2} \text { (distinct) }
\end{aligned}
$$

So $y=c_{1} y_{1}+c_{2} y_{2}=c_{1} e^{0 \cdot x}+c_{2} e^{-\frac{3}{2} x}=c_{1}+c_{2} e^{-\frac{3}{2} x}$
is ageneral solution.

Example 6. The equation

$$
y(x)=c_{1}+c_{2} e^{-10 x}
$$

gives a general solution $y(x)$ of a homogeneous second-order differential equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ with constant coefficients. Find such an equation.

ANS:

$$
\begin{aligned}
& y(x)=c_{1}+c_{2} e^{-10 x}=c_{1} \cdot 1+c_{2} e^{-10 x}=c_{1} e^{\substack{r_{1} \\
l_{1} x}}+c_{2} e^{\substack{r_{2} \\
-i_{1} x}} \\
& \Rightarrow\left\{\begin{array}{l}
r_{1}=0 \\
r_{2}=-10
\end{array}\right.
\end{aligned}
$$

So $r_{1}=0, r_{2}=-10$ are solutions to the char. eqn.
Thus $\left(r-\stackrel{\nu_{0}}{0}\right)\left(r-\left(-\frac{r_{2}}{(0)}\right)\right)=0$

$$
\begin{aligned}
& \Leftrightarrow \quad r(r+10)=0 \\
& \Leftrightarrow \quad r^{2}+10 r=0 \quad\left(\Leftrightarrow a r^{2}+b r+c=0\right)
\end{aligned}
$$

is the char. eq.
So $a=1, b=10, c=0$.
Thus the diff eqn is

$$
y^{\prime \prime}+10 y^{\prime}=0
$$

A second-order Euler equation is one of the form

$$
\begin{equation*}
a x^{2} y^{\prime \prime}+b x y^{\prime}+c y=0 \tag{8}
\end{equation*}
$$

where a, b, c are constants.

Example 7. Make the substitution $v=\ln x$ of the following question to find general solutions (for $x>0$) of the Euler equation.

$$
x^{2} y^{\prime \prime}+2 x y^{\prime}-12 y=0
$$

ANs: Let $v=\ln x$.
$\frac{1}{x}$ since $v=\ln x$

$$
\begin{aligned}
y^{\prime} & =\frac{d y}{d x}=\frac{d y}{d x} \cdot \frac{d v}{d v}=\frac{d y}{d v} \cdot \frac{d v}{d x}=\frac{d y}{d v} \cdot \frac{1}{x} \\
y^{\prime \prime} & =\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}\left(\frac{1}{x} \cdot \frac{d y}{d v}\right) \\
& =-\frac{1}{x^{2}} \cdot \frac{d y}{d v}+\frac{1}{x} \cdot \frac{d}{d x}\left(\frac{d y}{d v}\right) \\
& =-\frac{1}{x^{2}} \cdot \frac{d y}{d v}+\frac{1}{x} \cdot \frac{d}{d x} \cdot \frac{d v}{d v} \cdot \frac{d y}{d v} \\
& =-\frac{1}{x^{2}} \frac{d y}{d v}+\frac{1}{x} \cdot \frac{d^{2} y}{d v^{2}} \cdot \frac{d v}{d x} \nrightarrow \frac{1}{x} \operatorname{since} v=\ln x \\
\Rightarrow \quad y^{\prime \prime} & =-\frac{1}{x^{2}} \frac{d y}{d v}+\frac{1}{x^{2}} \cdot \frac{d^{2} y}{d v^{2}}
\end{aligned}
$$

Plug them into Eg (9). we have.

$$
\begin{aligned}
& x^{2}\left(-\frac{1}{x^{2}} \frac{d y}{d v}+\frac{1}{x^{2}} \cdot \frac{d^{2} y}{d v^{2}}\right)+2 x \cdot \frac{1}{x} \frac{d y}{d v}-12 y=0 \\
\Rightarrow & -\frac{d y}{d v}+\frac{d^{2} y}{d v^{2}}+2 \frac{d y}{d v}-12 y=0 \\
\Rightarrow & \frac{d^{2} y}{d v^{2}}+\frac{d y}{d v}-12 y=0
\end{aligned}
$$

This is of the form $a y^{\prime \prime}+b y^{\prime}+c y=0$, where y
is a function of v.
The char. eqn is

$$
\begin{aligned}
& r^{2}+r-12 r=0 \\
\Rightarrow & (r+4)(r-3)=0 \\
\Rightarrow & r_{1}=-4 \quad \text { and } \quad r_{2}=3 \quad \text { (distinct roots) }
\end{aligned}
$$

So $y=c_{1} y_{1}+c_{2} y_{2}=c_{1} e^{-4 v}+c_{2} e^{3 v}$

$$
\begin{aligned}
& =c_{1} e^{-4 \ln x}+c_{2} e^{3 \ln x} \\
\Rightarrow y(x) & =c_{1} x^{-4}+c_{2} x^{3}
\end{aligned}
$$

This is the general solution of $E_{g}(9)$.

